Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.

Identifieur interne : 000E73 ( Main/Exploration ); précédent : 000E72; suivant : 000E74

Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.

Auteurs : Ron Ortenberg [États-Unis] ; Stéphanie Gon ; Amir Porat ; Jon Beckwith

Source :

RBID : pubmed:15123823

Descripteurs français

English descriptors

Abstract

A strain of Escherichia coli missing three members of the thioredoxin superfamily, thioredoxins 1 and 2 and glutaredoxin 1, is unable to grow, a phenotype presumed to be due to the inability of cells to reduce the essential enzyme ribonucleotide reductase. Two classes of mutations can restore growth to such a strain. First, we have isolated a collection of mutations in the gene for the protein glutaredoxin 3 that suppress the growth defect. Remarkably, all eight independent mutations alter the same amino acid, methionine-43, changing it to valine, isoleucine, or leucine. From the position of the amino acid changes and their effects, we propose that these alterations change the protein so that its properties are closer to those of glutaredoxin 1. The second means of suppressing the growth defects of the multiply mutant strain was by mutations in the DNA replication genes, dnaA and dnaN. These mutations substantially increase the expression of ribonucleotide reductase, most likely by altering the interaction of the regulatory protein DnaA with the ribonucleotide reductase promoter. Our results suggest that this increase in the concentration of ribonucleotide reductase in the cell allows more effective interaction with glutaredoxin 3, thus restoring an effective pool of deoxyribonucleotides. Our studies present direct evidence that ribonucleotide reductase is the only essential enzyme that requires the three reductive proteins missing in our strains. Our results also suggest an unexpected regulatory interaction between the DnaA and DnaN proteins.

DOI: 10.1073/pnas.0401965101
PubMed: 15123823
PubMed Central: PMC409937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.</title>
<author>
<name sortKey="Ortenberg, Ron" sort="Ortenberg, Ron" uniqKey="Ortenberg R" first="Ron" last="Ortenberg">Ron Ortenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gon, Stephanie" sort="Gon, Stephanie" uniqKey="Gon S" first="Stéphanie" last="Gon">Stéphanie Gon</name>
</author>
<author>
<name sortKey="Porat, Amir" sort="Porat, Amir" uniqKey="Porat A" first="Amir" last="Porat">Amir Porat</name>
</author>
<author>
<name sortKey="Beckwith, Jon" sort="Beckwith, Jon" uniqKey="Beckwith J" first="Jon" last="Beckwith">Jon Beckwith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15123823</idno>
<idno type="pmid">15123823</idno>
<idno type="doi">10.1073/pnas.0401965101</idno>
<idno type="pmc">PMC409937</idno>
<idno type="wicri:Area/Main/Corpus">000E69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E69</idno>
<idno type="wicri:Area/Main/Curation">000E69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E69</idno>
<idno type="wicri:Area/Main/Exploration">000E69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.</title>
<author>
<name sortKey="Ortenberg, Ron" sort="Ortenberg, Ron" uniqKey="Ortenberg R" first="Ron" last="Ortenberg">Ron Ortenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gon, Stephanie" sort="Gon, Stephanie" uniqKey="Gon S" first="Stéphanie" last="Gon">Stéphanie Gon</name>
</author>
<author>
<name sortKey="Porat, Amir" sort="Porat, Amir" uniqKey="Porat A" first="Amir" last="Porat">Amir Porat</name>
</author>
<author>
<name sortKey="Beckwith, Jon" sort="Beckwith, Jon" uniqKey="Beckwith J" first="Jon" last="Beckwith">Jon Beckwith</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>DNA Replication (MeSH)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (growth & development)</term>
<term>Escherichia coli (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (croissance et développement)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Réplication de l'ADN (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Oxidoreductases</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>DNA Replication</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>Réplication de l'ADN</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A strain of Escherichia coli missing three members of the thioredoxin superfamily, thioredoxins 1 and 2 and glutaredoxin 1, is unable to grow, a phenotype presumed to be due to the inability of cells to reduce the essential enzyme ribonucleotide reductase. Two classes of mutations can restore growth to such a strain. First, we have isolated a collection of mutations in the gene for the protein glutaredoxin 3 that suppress the growth defect. Remarkably, all eight independent mutations alter the same amino acid, methionine-43, changing it to valine, isoleucine, or leucine. From the position of the amino acid changes and their effects, we propose that these alterations change the protein so that its properties are closer to those of glutaredoxin 1. The second means of suppressing the growth defects of the multiply mutant strain was by mutations in the DNA replication genes, dnaA and dnaN. These mutations substantially increase the expression of ribonucleotide reductase, most likely by altering the interaction of the regulatory protein DnaA with the ribonucleotide reductase promoter. Our results suggest that this increase in the concentration of ribonucleotide reductase in the cell allows more effective interaction with glutaredoxin 3, thus restoring an effective pool of deoxyribonucleotides. Our studies present direct evidence that ribonucleotide reductase is the only essential enzyme that requires the three reductive proteins missing in our strains. Our results also suggest an unexpected regulatory interaction between the DnaA and DnaN proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15123823</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>101</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2004</Year>
<Month>May</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>7439-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A strain of Escherichia coli missing three members of the thioredoxin superfamily, thioredoxins 1 and 2 and glutaredoxin 1, is unable to grow, a phenotype presumed to be due to the inability of cells to reduce the essential enzyme ribonucleotide reductase. Two classes of mutations can restore growth to such a strain. First, we have isolated a collection of mutations in the gene for the protein glutaredoxin 3 that suppress the growth defect. Remarkably, all eight independent mutations alter the same amino acid, methionine-43, changing it to valine, isoleucine, or leucine. From the position of the amino acid changes and their effects, we propose that these alterations change the protein so that its properties are closer to those of glutaredoxin 1. The second means of suppressing the growth defects of the multiply mutant strain was by mutations in the DNA replication genes, dnaA and dnaN. These mutations substantially increase the expression of ribonucleotide reductase, most likely by altering the interaction of the regulatory protein DnaA with the ribonucleotide reductase promoter. Our results suggest that this increase in the concentration of ribonucleotide reductase in the cell allows more effective interaction with glutaredoxin 3, thus restoring an effective pool of deoxyribonucleotides. Our studies present direct evidence that ribonucleotide reductase is the only essential enzyme that requires the three reductive proteins missing in our strains. Our results also suggest an unexpected regulatory interaction between the DnaA and DnaN proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ortenberg</LastName>
<ForeName>Ron</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gon</LastName>
<ForeName>Stéphanie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Porat</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckwith</LastName>
<ForeName>Jon</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM041883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM055090</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM 41883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM 55090</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>04</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15123823</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0401965101</ArticleId>
<ArticleId IdType="pii">0401965101</ArticleId>
<ArticleId IdType="pmc">PMC409937</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1999;310:91-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 10;292(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 5;275(18):13398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Aug;183(15):4562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Aug;183(15):4571-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 1;20(15):4253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:21-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 5;294(5540):158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11588261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Feb;184(3):695-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11790739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 29;277(13):10861-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Nov;26(4):355-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12413665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2003 Aug;5(4):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Jun;134(3):1141-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">149110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Aug;143(2):561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7009552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Dec;84(23):8525-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3317413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Dec;174(23):7716-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Jan;176(2):378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8288532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Apr;24(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9140960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jul 17;273(29):18382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9660805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jul 31;280(5):799-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5543-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Jan;181(2):508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9882665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 19;274(12):7695-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10075658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Feb;182(3):842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10633125</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Beckwith, Jon" sort="Beckwith, Jon" uniqKey="Beckwith J" first="Jon" last="Beckwith">Jon Beckwith</name>
<name sortKey="Gon, Stephanie" sort="Gon, Stephanie" uniqKey="Gon S" first="Stéphanie" last="Gon">Stéphanie Gon</name>
<name sortKey="Porat, Amir" sort="Porat, Amir" uniqKey="Porat A" first="Amir" last="Porat">Amir Porat</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Ortenberg, Ron" sort="Ortenberg, Ron" uniqKey="Ortenberg R" first="Ron" last="Ortenberg">Ron Ortenberg</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15123823
   |texte=   Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15123823" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020